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The space of 2-by-2 Hermitian matrices is isometric to Minkowski space. This
is commonly used to exhibit the group SL(2, C) as a twofold cover of the identity
component of the Lorentz group. That these Hermitian matrices also represent
equations of circles in the Euclidean plane leads to the group PSL(2, C) as the
Maobius group of the Euclidean plane. Clifford algebras naturally arise in the
construction of covers of the orthogonal group by spin groups. By considering
in addition the Clifford algebra of the space of equations of spheres, we are able
to extend these ideas to the Mobius group of finite-dimensional vector spaces
over general fields.

OVERVIEW

Representations of the Lorentz group O(1, 3), with signature (+——-—),
have been of great interest to both physicists and mathematicians since
Einstein introduced relativity. With the advent of quantum mechanics, and
the Dirac equation in particular (Dirac, 1927, 1928), the spinor representa-
tion of the identity component SO (1, 3) by use of its twofold cover SL(2, C)
has gained special importance. It arises as the “adjoint” representation of
SL(2, C) on the space of Hermitian matrices H(2, C) (Penrose and Rindler,
1984). This space, equipped with the determinant as quadratic form, is
isometric to Minkowski space, R'**. What is less familiar is that H(2,C)
represents equations of “circles” in the Euclidean plane, and that the quadric
in the projective space based on H(2,C) is a conformal compactification
of this plane (Hua, 1981). The Mdbius group, which is a group of complex
point transformations that sends “circles” to ‘“circles,” naturally acts on
this quadric. The matrices of determinant zero, which represent points of
this quadric, factor into a column (%) in C* and a row which is the Hermitian
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adjoint (£)'*. It is these columns, called spinors, on which SL(2, C) naturally
acts. The group SL(2, C) also has a projective spinor representation when
it acts on the complex projective line consisting of points (5)@, where €
denotes the multiplicative group of C. In analogy with classical projective
geometry, we call (f;) the homogeneous coordinates of the projective
spinor (£)C.

In terms of Clifford algebras and their even subaigebras, the Clifford
algebra based on R'* has its even subalgebra isomorphic to the algebra of
all 2-by-2 complex matrices. The subgroup of the even Clifford group
consisting of elements of unit spinorial norm is isomorphic to SL(2, C).
The Clifford algebra based on R% has its even subalgebra isomorphic
to C. The even Clifford group is isomorphic to €. Thus, we have an even
Clifford algebra that consists of 2-by-2 matrices over another even Clifford
algebra. The former is related to the space of equations of “circles,” and
the latter to the space of points. We will call this the classical case. See
Lam (1973) for a general discussion of Clifford algebras.

In more detail, the equation of a ““circle” is given by

pz¥z—B*z—-z*B+g=0,

where p and g are real numbers and 8 is complex. To represent a proper
circle, p cannot be zero and B*B8 must be greater than pq. This equation
can be represented by a Hermitian matrix

-B* q
If it has determinant zero, it can be considered to represent a point in the
Euclidean plane. Such matrices are of rank one and so have a factorization

(5 -GG

where ¢ and n are complex numbers, A is real, and #* denotes the Hermitian
adjoint. If % is not zero, then
(n)e-()e
n 1

and the matrix represents the point associated with the complex number z.

Now the action
&\ = a b\ &\
<n)cm(c d)(n)C
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induces the action

r B\ a b\ p -B\/a 'b)'*c
(e e~ DD e

which we call the projective vector action.

We here extend the classical case to the case of a finite-dimensional
vector space over an arbitrary field of characteristic not two and equipped
with a nondegenerate quadratic form, with these differences:

1. We will find the cover of the full orthogonal group by using the
whole Clifford algebra.

2. The equation of a “sphere” will be determined by a quadratic form
instead of by the Hermitian form associated with complex numbers.

Our approach is quite different from that of Vahlen as revived recently by
Ahlfors and others (Ahlfors, 1986; Lounesto and Latvamaa, 1980; Lounesto
and Springer, 1989).

1. SPACES, ALGEBRAS, SPHERES, AND SPINORS

Some of the terminology already used in the previous section will now
be formally defined. The main aim will be to introduce notation used later.

Let x denote a vector in a finite-dimensional vector space X over an
arbitrary commutative field K of characteristic not two. Let K denote the
multiplicative group of K. Equip X with a nondegenerate quadratic form,
denote its associated bilinear form by x-y, and denote its orthogonal group
by O(X). The Clifford algebra A associated with this quadratic form is the
associative algebra generated by the vectors of X with relations x° = x+x
which imply xy-+yx=2x-y. We will call the submonoid generated by the
vectors of X the Clifford monoid and denote it by M. The subgroup
generated by the nonisotropic vectors of X is called the Clifford group and
is denoted by I'.

The Clifford group I' is a central extension of the orthogonal group
O(X), the nonisotropic vector a mapping to the reflection

x ~ —axa/a-a=x—a(2a-x/a-a)

in the space orthogonal to a. See Conway et al. (1985).

Orthogonal transformations of X extend uniquely to automorphisms
and antiautomorphisms of the Clifford algebra. In particular, the identity
on X extends to the identity on A as well as to the anti-involution a » “a;
while negation on X, that is, x ~» —x, extends to the involution a ~ ‘a as
well as to the anti-involution a ~» *a (Lam, 1973).

The equation of a “sphere” of X has the formula

WX X —2wex+ wP =0
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where w’ and w® are scalars in K and w is a vector in X. The notation
extends the usual polyspherical coordinate notation (Klein, 1926). This
includes proper spheres (w®# 0 and —w°w™+w-w # 0), proper hyperplanes
(w’=0 and —w’w®+w-w#0), and “cones” (—w’w®+w-w=0). Only the
choice w°, w*, and w equal to zero does not represent the equation of a
“sphere.” We represent the equation of a ““sphere” by the matrix

o0
W —w
w:
- w®  —w

Such matrices, plus the zero matrix, form a vector space W over K of
dimension two greater than that of X. All matrices obtained by multiplying
by a nonzero scalar represent the same “‘sphere.” The space W of “spheres”
is then the projective space of one-dimensional subspaces of W.

Inspired by the role that —w’w*™+w-w plays in distinguishing different
types of “spheres,” extend the quadratic form on X to W by

W wew = —wlw 4+ wew

If w’=1 and w-w #0, the sphere is proper and w-w is the “square of its
radius.” The quadric of W, denoted by W, is the subset consisting of “cones.”

The Clifford algebra A associated to the quadratic form of W consists
of two-by-two matrices over A, and is in fact all such matrices. Let I’ denote
its Clifford group. Also let A denote the set of all two-element columns
over A, so A acts on A by matrix multiplication.

The involutions and anti-involutions of A will be denoted by the same
symbols as those of A. For instance, ‘g in A corresponds to “a in A. Let ¢
denote the matrix

(o)
10

Then ‘g = 9" gf ', where t* transposes the matrix g and applies * to each
entry. Note, in comparison to the classical case, that we find it convenient
to write adjoints and transposes to the upper left. The anti-involution J
induces a “Hermitian adjoint” j that sends a column a to the row’a = "ag".
The Hermitian adjoint j and the anti-involutions J on A and * on A are
related by

‘(B‘a)=a’h,  *(‘ba)=’ab, ’(aby)=*y'b’g
The latter replaces sesquilinear with *“bi-Hermitian” with respect to the left

A- right A-bimodule structure on A.
Define S to be the subset of A consisting of columns

)
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satisfying

1. s' and s° are the products of vectors in X.

2. s'*s%isa vector in X

3. If neither s' nor s® is invertible, then s'*s® must be a nonzero
isotropic vector of X.

Let S be the set of equivalent classes of § modulo the Clifford group T.
We denote a typical element of S by s=35I" and call § the homogeneous
coordinates of the projective spinor s. The Cliﬁord group [’ acts on the
space W by the vector action w~~ yow=yw y and on the prOJectlve
quadric ¥ by the projective vector action a,b ([/K M yo = (//K The
kernel of the later action is denoted by Z. Define the Mébius group G to
be the factor group I'/ Z. The quadric ¥ is J-Hermitian: for the element
¥ = ¢1K of ¥, we have 4/ Y. As in the classical case,  factors as ¢ = §5K
for some % in S. This induces a projective spinorial action of the Mdbius
group G on S given by s = 5T~ gs = y3T', where g is the Z-coset of y.

We will select a subset 3 of the Clifford group I, an element ¢ = gK
of the quadric ¢, and a spinor e = &I’ of S such that:

1. fisanorbitof G: ¥ =Geeg=3o0¢
2. Sis an orbit of G: S=Ge=3e.
3. Each element ¢ of 2 uniquely represents a “sphere” of X.

As in the classical case, the quadric ¥ is the conformal compactification
of X. It consists of copies of three structures associated with X: the vector
space X itself, the cone of all isotropic vectors in X, and the projective
quadric associated to this cone. We call these cases (x), (y), and (z),
respectively.

Since we use these copies in the proofs to follow, we will be more
precise. Let Y denote the cone {x in X |x-x =0} and let Z denote the quadric
{xK |x-x=0 and x#0}. Then, the disjoint union X O Y& Z, the set of
representatives 3, the set of spinors S, and the quadric ¥ correspond
bijectively. The bijections 3> S->¥ are given by g goe > ge. The
bijection X O YO Z >3 consists of the following cases:

(x 1~x'x>
XA g =
i 1 —X

(y) For each isotropic vectory in Y,

2

1 -y
y g_<y 1)

(x) For each x in X,
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(z) Foreach 7K in Z, choose a representative nonzero isotropic vector
z and a vector t of X such that z’K =zK, 2t-z=1, and t-t=1; then

z 1
z’ng=( )
zt —t

Finally, we want to call attention to an unusual feature of this paper.
The method used is “form invariant” with respect to the field, the dimension
of the space X, and the quadratic form associated with X. For instance,
the matrix representing inversion in the proper sphere with the equation
woxx —2w-x + w® =0, where w’# 0 and —w’w*+w-w> 0, has the form

(e )6 2

W= o = w

w —-W 1 —¢

where ¢ is the center of the sphere, and p is the power of the origin with
respect to the sphere. This form does not depend on any of the above-
mentioned structures of the space X. This is because, up to a nonzero scalar
multiple, the elements of the matrices have direct geometrical significance.
The same is true of the elements in the columns, which represent projective

spinors in homogeneous coordinates. This happens because the algebraic
structures which we use are directly tied to the underlying geometry.

2. PROOFS

Since the homogeneous coordinates of the set of spinors S are products
of vectors in X, we begin by proving some lemmas concerned with such
products. Let K be a commutative field of characteristic not two, and X
be a finite-dimensional vector space over K equipped with a nonsingular
quadratic form. Let A be the Clifford algebra of X, and M be the “Clifford
monoid” formed by products of vectors, possibly isotropic, of X. The
following lemma and its corollary are useful in showing that certain elements
of the algebra A are in the monoid M.

Lemma 0. If a and b are vectors in X and [ a scalar in K| then /+ab
is in the monoid M.

Proof:
1. If I =0, there is nothing to prove. If a is invertible, then
I[+ab=a(a 'I+b)

is a product of two vectors, and similarly if b is invertible. We can now
assume that /50 and that both a and b are isotropic.
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2. If 2a-b# 0, then the vector x=a+Db is invertible. The product (I+
ab)x is easily checked to be a vector using aba=a(2a-b) —b(2a-a). Since
x ' is a vector, we obtain [+ab is in M.

3. Suppose that 2a-b = 0. Since X is nonsingular, we may find isotropic
vectors a’ and b’ such that 2a-a’= 1, 2b-b’ = 1, and the nonsingular subspaces
spanned by a and a’ and by b and b’ are orthogonal. Choose k in K not
equal to +1, so that the vectors y=a+a'k and z=a—a’k are nonisotropic.
One checks that the product y(/+ab)z is equal to L+ AB, where again L = ki
is a nonzero scalar and both A =2al+bk and B= —a’k are isotropic vectors.
Moreover, 2A-B=—2kl 7 0. This is of the form covered by part 2. Since y
and z are invertible, it follows that I+abisin M. W

Corollary. 1f a, b, and ¢ are vectors in X, then both ab+be and a-+bac
are in the monoid M.

Remark. That is, if both terms have a vector in common, their sum is
in the monoid.

FProof. Since ab+bc=2ab+b(c—a), it follows from the lemma that
ab+be is in M. We prove that a+bac is in M by considering cases.

1. Suppose that a-a> 0. Since a~'ba is a vector, a+bac=a(1+a 'bac)
is in M by the lemma.

2. Suppose that 2a-¢=0. Then a+bac=(1—bc)a, which is in M by
the lemma.

3. The remaining case is that both a-a=0 and 2a-c# 0. Choose k so
that x =ak +c¢ is an invertible vector. Then

(a+bac)x=ac+b(2a-ck+c-c)a

and this is in M by the first assertion of this corollary. Since x is invertible,
a+bacisin M also. W

Lemma 1. If X is nonsingular, then all the nonzero elements of the
Clifford monoid are of the form m =z,z, .. .z,y, where the z; are pairwise
nonzero orthogonal isotropic vectors and vy is an element of T'.

Call such an expression a “left-reduced” form of the element m.

Proof. View m as the product of elements in order from three “‘lists™:
m=(...z...)(...x...)(...t...). The t-list consists of nonisotropic vec-
tors, and the z-list consists of isotropic vectors which are orthogonal to all
vectors in both the z-list and the x-list. Initially the x-list is any product of
vectors giving the element m. On the other hand, initially both the z- and
the t-lists are empty, that is, the product of each by convention is the
scalar 1. Each step of the induction will examine the rightmost vector x’ of
the x-list and then reduce by one the number of vectors in that list and
increase by one the size of either the z- or the #-list.
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1. Ifx'is nonisotropic, then simply declare x’ to be the leftmost member
of the t-list with no other changes.

2. Else x’ is isotropic.

(a) If x' is orthogonal to every vector in the x-list, then move x’ to the
right of the z-list with at most a change of sign.

(b) Else let x” be the first vector to the left of x’ in the x-list which is
not orthogonal to x". Move x’ to the left until it is adjacent to x” with at
most a change of sign.

(i) If x" is nonisotropic, then shift x” to the t-list by conjugating the
vectors in the x-list to its right.

(ii) Else x" is also isotropic. Then replace x’ by the nonisotropic vector
x"+x'. Now shift this nonisotropic vector to the t-list by conjugating the
vectors in the x-list to its right.

The proof is now complete with the observation that if any vector z
and any nonisotropic vector t are both orthogonal to any other vector z/,
then the conjugate tzt™' remains orthogonal to z. W

Remark. All the nonzero elements of the Clifford monoid M are also
of the form m = yz,...z,z,, where the z; are pairwise nonzero orthogonal
isotropic vectors and vy is an element of I'. Call such an expression a
“right-reduced” form of the element m. This is immediate from the proof
of the lemma by interchanging right and left.

Lemma 2 and its corollaries are used to determine the special form for
spinors in the (z)-case. This case has no classical analogue to guide us.

Definition. Define, within the Clifford algebra, the exterior product of
vectors in X to be

1 .
N R Y XiXi2) - - - Xi(ry 5g0(E)
riies,
where sgn(i) is the sign of the permutation i in the symmetric group S, on
the integers from 1 to r.

Remark. The vectors x4, X, . .., X, ar¢ linearly independent if and only
if x;Aax,n oo AX, Z0.
Notation as in Lemma 1.

Lemma 2. 1If z,z,...2z,y and ziz5...z,v' are two left-reduced forms
of the same nonzero element of M, then r=r' and the z-list and the z'-list
span the same subspace of X.

Proof. Suppose that some z; is not in the span of z,,2,,...,z,. Then,
since the exterior and Clifford products are the same for pairwise orthogonal
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vectors, we have
7
0#(Z]AZ AT A -+ AZ)Y
=z;A (2:2;...2,7)
=z;a(z125...2.y)
=(Z;AZIAZLA - - AZL)Y' =0
which is a contradiction. Thus, all the z; are in the span of z,z,,...,z2,

and r'=r. Now repeat the argument with the z-list and z'-list inter-
changed. W t

Corollary 1. If zy and 7'y’ are left reduced forms of the same nonzero
element of M, then z'=zk for some scalar k # 0.

Remarks. Call the size of an element the size of its z-list in any left-
or right-reduced form. The size of a product mn is greater than or equal to
the maximum of the sizes of m and n. This follows since the steps in the
reduction process in the proof of Lemma 1, and the remark following it,
never decrease the number of elements in a z-list. In particular, if two
elements of M which are not invertible have a product of size one, then
each element must have size one.

Recall

1
s _ . ..
S:{s‘:( O) €Als' and 5% in M, s" *s%is in X,
s

but if neither s' nor s° is in T, then s' *s°# 0}

and S={s=3T|5in S}.
Corollary 2. Let

()

be in S, and assume that neither s' nor s° is in T, so that s’ *s°# 0 is in X,
and let z be a nonzero isotropic vector defined up to a scalar multiple by
zK = s' *s°K. Then there exists a vector t in X so that t-t=1, 2t-z= 1, and

§=(;>7

where vy is in the Clifford group T.

Proof. Define z=s'*s°k, where k in K is to be chosen later. Since
z#0, Corollary 1 and the subsequent remarks imply that s' and *s° have
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left- and right-reduced forms s'=zy and *s°= 6z, respectively. Thus, z=
(zy)(8z)k = 22’ y8k, where 2’ = (y8)z(y8)~'. Note that z cannot be orthogonal
to z/, for if it were, then zz' would be zero or a z-list of size two instead of
one. Set t' =z(2z"-z)+Z', so now z =zt'y8k. Thus,

SO: *(61) =7 *6 = _Ztl'ya *5k = Z('—‘t’a *ak)‘y =zt‘y

where t=—t'6 *6k. It follows that
< )
zt

2t-z=—-2t'-z8 ¥*6k=—(22"-2)6 *6k # 0

and that

Choose k=—1/(22'-z)8 *5 to achieve 2t-z=1and t-t=1. W

Recall that there are three cases, called (x), (y), and (z), which describe
points of the conformal compactification of X.

Also recall that the anti-involution J is given by g ~ ‘g = ¢ g ' and
induces the “Hermitian adjoint” j given by a ~‘a= "ag ', where

-7 o)

_* acts on the entries of a matrix elementwise, and ¢ is the ordinary transpose,
so that /(yd) =’a’y, for all y in T.
Notation as before. In addition, from Section 1,

w —w"
wefr=(30 )
w’  —-w

are scalars in K and w is a vector in X}

w? and w®

¥ ={w in W|w not zero, and w-w = 0}
¥ ={y=yK|y in ¥}

Let & be an element of § and set e = &I in S. One checks that £= éle
is in ¥, so ¢ = gK is in ¥. Note that g o £ = gg 'gK equals gé’(gé)K. We
may write S=3e and ¥ =X o ¢ as a consequence of the following lemma.

Lemma 3. There is a choice of & in § and a subset T of [ which is a
set of unique representatives of both S and ¥ in the sense that the maps
g~ ge and g ~ ¢ © £ are bijections from X to S and ¥, respectively. Hence
ge ~ g g is a bijection from S to V.
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Proof. A typical element of S is

s=3T, §= §0

where 5! and s° are elements of M such that s' *s° is a vector of X, but if
neither s' nor s”is in T, then s' *s°#0. A typical element of ¥ is ¢ = ¢k,

‘!’=<¢o ¢ )

2

where ¢° and > are scalars in K and s is a vector in X, such that ¢ #0

and ¢+ ¢ =—y¢ ¢+ =0. Choose & to be (}), and check that e is in S.
A u~nique representative ¢ will be constructed that represents both an

s in § and the corresponding ¢ in W. For the construction of %, we consider

separately the cases (x), (y), and (z) of elements in ¥, the conformal
compactification of X.

(x) Case. This is the case when s° is in T and, correspondingly, ¢° is
in K. For each s = ()T in S such that s° is in I', dependent on s but not
on the choice of (%), we define x to be the vector s'(s°) ™' = 5! *5°/5° *5° of
X. Then s = (})I'. The corresponding ¢ is defined by

. (x —x-x) R
1 -X

Then ¢ is in ¥ and for any ¢ such that ¢ = 1!/12, ¢° is in K. Conversely,

for each
AT
(L)
A
in ¥ such that ¢° is in K, dependent on ¢ but not on the choice of
y= ( lllo ¢ )
¥

we define x to be the vector ¢(¢°) ™" of X. Then

o= (x —x-x) 2
1 —x
Any x may be obtained for a suitable choice of . This means that X is
embedded in its conformal compactification ¥ by identifying vectors of X

with vertices of cones in W. The corresponding s is obtained by setting
s=(})T. Then s is in S, and for any § such that s = 5T still s°is in I". Having
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found the corresponding pair, we now define g, their common representa-
tive, to be the invertible vector

(x 1 —x-x)
1 —-X

of W. One easily checks that s = ge and ¢ = g © &. For each x in X we include

(x l—x-x)

U =

: 1 —-X

into ¥ as the unique representative of both s and ¢.

(y) Case. This is the case when s' is in T but s° is not and, correspond-
ingly, ¢ is in K but ¢° is not. For each s = (%)I" in S such that s° is not
in I but s' is in I, dependent on s but not on the choice of (itl’), we define
y to be the isotropic vector s%(s')™'=s°%s'/s' *s' of X. Then s=(})T.
Define the corresponding # by

— 1 o
o= ()%
0 vy
Then ¢ is in ¥ and ¢° is not in I&, but ¢~ is in K for any ¢ such that
¥ = yK. Conversely, for each

(¥ —«/J“’)I&
v (w" -

in ¥ such that ¢° is not in K, that is, $°=0, but ¢ is in K, dependent on
¢ but not on the choice of
(%)
¢ b

we define y to be the isotropic vector Ys(*) " of X. Then

— 1 °
()%
0 vy
The corresponding s is obtained by setting s = (;)I‘. Then s is in S, and for

any § such that s = 5T, we have s° is not in I and s' is in I". Define g, their
common representative, to be

G =06 )
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which is a product of two invertible vectors of W, showing that ¢ is in I.
One again easily checks that s = ge and ¢ = ¢ ° &. For each isotropic vector

y in X, we include
G )
0':
77\y 1

into 2 as the unique representative of both s and .

(z) Case. This is the case when neither s’ nor s' is in " and, correspond-

- - . 4 - . - .
ingly, neither ¢° nor ¢ is in K. In this case, s' *s° is a nonzero isotropic

vector in X. No unique vector of X is determined by s, but z is determined
. ] o . 1
up to a nonzero scalar multiple by zK = 5" *s°K for any choice of ({o). Then

-

by the corollary to Lemma 2, and where t is any vector of X such that
2t-z=1 and t-t=1. The corresponding ¢ is obtained by setting

()
v= 0 -z

The§1 ¢ is in ¥, and for any ¥ such that ¢ = l!IIZ both ¢° and ™ are not
in K. Conversely, for each
v = ( v Y ) 7

\g®  —
in ¥ such that both ¢° and * are not in I&, again no unique vector of X
is determined by ¢, but z is determined up a nonzero scalar multiple by

G )
v= 0 —z

The corresponding s is obtained by setting

sz(%)F
zt

where z’' =zk is a nonzero isotropic vector and t' is any vector of X such
that 2t - 2’ # 0. We note that we may omit the primes, for if z=zk, k in K,

then
( ’ () ( )
z't Zt

Then
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(Z,;,) (u) (tz+zt)k

setting y=(tz+zt')k, we have y*y=(2tz)k’#0 and y is in I by the
corollary of Lemma 1. Now s is in S and both s° and s’ are not in I'. Now
define ¢, the common representative, to be

_<z 1 >_(vl ml><v m)"l(z 1\7!

7= 2t —t) \vwv —vIJ\O -—v Y —z)

where m=1-—1is a scalar, v=z—t/ is a vector, and [/ is a nonzero scalar
chosen so v is nonisotropic. This makes ¢ a product of three invertible
vectors of W. Again one easily checks that s = ge and ¢ = g o &. Thus, for
each z’I%, we choose a representative nonzero isotropic vector z and a vector

t such that 2t-z=1 and t-t=1 and include

(L)
o’:
¥ zt —t

in £ as the unique representative of s and .

Since we have constructed a set of unique representatives ¢ in £ for
each corresponding pair s = ge and i = ¢ © ¢, clearly ge » g © ¢ is a bijection
from S=3Zeto¥=2Z-¢c N

Since

To show that ¥ and S are preserved under the action of the group [,
it suffices to show that they are preserved under the action of invertible
matrices in W, since elements of [ are products of invertible matrices in W.

Notation as in Lemma 3.

Lemma 4. (WAnL) ¥,

Proof. A typical element of WU is an invertible vector

B ( w —woo)
YT —w
of W, and a typlcal element of W=Zceis y=gog= a,l/K Let ¢'= wdf w
and (p 1~[1 K= wo . Now we must show that ¢’ is still ¥. But

¢ = wi'w=wiw = wQw¢) — y(ww)
(v

Yrp = 0. Finally,¢:
us, ¢’ isin¥. W

is in W. In addition, ¢r is isotropic since ¢’ = w)?
is not zero, since ¥ is not zero and w is invertible. h

Corollary. (WnI)Sc S.
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Proof. A typical element of W1 is an invertible vector

- (s o)
W —w )
w:
¥ w®  —w

of W, and a typical element of S=3e is of the form

(O (o ()

as in Lemma 2. Their product is of the form aI’, where d=($(‘>). Using
Lemma 0 and its corollary, in all cases one sees that a' and a° are in M.
It is also easy to calculate that a' *a° is a vector in X. Finally, we must
show that, if a' *a®=0, then either a' or a° is invertible. For this, note that

. a' a'*d® a'*a’

Fi= = w0k 1y
a‘a= 0 ( a a)_ 0% O 0% 1
a a *a® a’*a

as well as a’a —(wa'e) (wge) = Wi[/ w, where Y= gé’(gé). Here we have
used /(wgé) =’(ge)’w. By the lemma, wis wK is in ¥, so a’da#0. But if
a'*a®=0, then a®*q' =0 also, and

1% 1

) a
aa=( 0, @
a’ *a 0

So, either a®*a’ or a' *a' is a nonzero scalar, showing that a' or a° is

invertible. This, al'isin S. W

The lemma to follow will be used to develop the equations associated
with Mobius transformations and their fixed points. This lemma, in the
context of the complex numbers, was alluded to by Cartan (1937), who
remarks that “‘spinors have metric properties, but not affine characteristics.”

Lemma 5. For §in S, /55 =0.

Proof. We have §=gé with ¢ in £. Then 55 ='¢ 'ggé =/¢¢ 'gg, since
fgg is a scalar times the unit matrix. Since &= (y) and ‘¢ = (0, 1), we have
‘ee=0. A

Corollary. Let y be in I and 5 in S. If §' = 3, then '§'y5 = 0.

(%)

Remarks. If we set

y'oy®
Y= ( ) and
-\ Y

1 s} n
}§7§ (* rO*S/I)(yO y2>( 0)
DA 4 s

— * rl,y Sl+*5’1’)’250+* 107 s +*S/0ywS0

Ll
il

then
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from which we obtain the equation for the general Mobius transformation
associated with y in its biquadratic form over the Clifford algebra A.
Recall that an element of G is g = yZ, where Z is the kernel of [ acting
on V. So G represents the Mdbius transformations directly, while T rep-
resents their equations.
The Mdbius transformation y represents inversion in a nonsingular

“sphere” of X, when vy is
[so)
w —w
W =
7 (wO -w )
10 o 0

T5'ws="*s""wos' —*5'ws"+ *5 s — *5"'w s

In this case,

The corresponding equation of fixed points, /sws§ =0, represents the points
of nonsingular “sphere.” In the (x) case of Lemma 3, that is,

1
_=(s0)=<)1(>% xin X and yin T
s 2

the equation reduces to w’k-x —2w-x+ w* =0. This is the classical equation
of a “sphere.”
Besides inversion in a nonsingular “sphere” of X, other common
Maobius transformations of X have simple associated matrices.
Translation:

(o )
XA X+a with
01

Homothety:

. A0
x~xA (A in K) with <O 1)

“Special conformal” transformation:

1 0
x~ (x '+a)”" (where defined) with (a 1)
Compare this with the approach of Lounesto and Latvamaa (1980).
This completes the technical lemmas. We may now state our main
conclusions.

Proposition 1. The set of projective spinors is S =I'e, and the Mdbius
quadricis ¥ =[c¢.
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Proof. Since 2 < [, theinclusionsZecl'eand 2o e < ' o £ are immedi-
ate. Since very element of [ is a product of invertible vectors, the opposite
inclusions are a consequence of Lemma 4, its corollary, and induction. W

Corollary. The group I acts transitively on both S and ¥. Moreover,
these actions are equivalent with respect to the bijection from S to .

Proof. The actions are transitive, since the lemma establishes that S
and ¥ are orbits of e and &, respectively. By the bijection of Lemma 2, the
elements s = ge and ¢ = ¢ ° ¢ correspond. The element y of I sends these
to ys=1y(ge)=(yg)e and yo y=yeo(gee)=(yg)e ¢, respectively. W

Since corresponding elements of S and ¥ have the same stability
subgroups in I', we may define the kernel Z of the equivalent actions of T
on S and V¥ as the intersection of all the stability subgroups. This justifies
defining the Mobius group G to be I'/ Z. The group G now acts effectively
on both S and ¥. Thus we have proved the following result.

Theorem. The Mobius group G acts transitively and effectively on both
the projective spinors S and on the quadric ¥ and these actions are
equivalent with respect to the bijection from S to V.

Remark. The “units” of I' are characterized as those y in I" such that
yx=x "y for all x in X. Likewise, the “volume elements” of I are character-
ized by yx = ~x 'y for all x in X. Similar definitions hold for ['. The subgroup
Z of T consists of all such units and volume elements of I. These units are

& 9) and the volume elements are

(uk 0 )

0 —'uk

where u is some volume element of I and the k in K are the units of T.
There are some interesting and nonstandard ways of characterizing the

Clifford group of A. The following proposition shows the equivalence of

these nonstandard characterizations to the standard ones.
Denote a typical element of A by

1 oo}
o 42
a =
< a() a2

Proposition 2. The following descriptions of the set of elements of the
group I are equivalent:
1. The product of invertible vectors of W.

and recall that ¢ is (? ).
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2. Elements ¢ in A satisfying the “Vahlen conditions”:

kK 0
J o =

where k' is in K, ¢&, ‘e, a2, and “a6é are in S.

3. Interms of the elements of I, elements of [ have one of the following
simple forms:

(a) If the lower left entry of g is invertible, then

(a k+ab>
a -
¢ 1 b Y

where a and b are in X k is in I&, and yisin I,

(b) If some other entry of a is invertible, ¢ has the above form changed
only by permuting the appropriate rows or columns.

(c) If no entry of ¢ is invertible, then

Z sz
AL
zt  —szt
where z, s, t are in X; 2s-z, 2t-z, s-s, and t-t all equal 1; z-.z=0; and 8 is
inT.

Proof. The set described by 1 is contained in the set described by 2.
This follows from Proposition 1.

The set described by 2 is contained in the set described by 3. In case
that some entry of ¢ is invertible, say the lower left entry; we have

(a k+ ab>

a _

¢ 1 b Y

where a and b are vectors, v is the element a’ of the Clifford group I', and
k is the scalar k = k'/ v *+v. That the first column is (})y and the second row
is (1 b)y follows from the (x)-case of Lemma 2 using the fact that @€ and

‘& respectively, are in S. That the second column is (“}**)y, follows from

k0
Jo =
ee=(t 1)

In the remaining case, when no entry of a is invertible, we have

az(z sz>6
~ zt —szt

That the first column is (:,)6, that the first row is (z sz)8, and that the second
column is of the form ()8’ follow from the (z)-ciase of Lemma 2 using
the fact that &, 'age, and ¢fé, are, respectively, in S. Here ' is an isotropic
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vector, u’ is a vector such that 2u’-z’=1 and w’-u'=1 and &' is in I'. This

shows that
z sz
(5 )’
7t —szu

where u=—88""'u'6'8"". The condition

B (k’ O)
o =
= c 0 K
implies the following conditions.
(i) (upper left entry)
zs(2u-z) +sz(2t-z) =k’
(ii) (lower left entry)
ztuzs —szutz =2z A (t(2u-z) —u(2t-z)) As=0

From (i), 2u-z = 2t-z. This simplifies (ii) to z A (t —u) A s = 0. This then implies
t—u=zl'+sl for some ! and ' in K. But 2s:z#0, so I =0, and u=t—zl'.

Finally, —szu= —szt. Thus,
" < Z sz ) 5
- zt szt

The set described by 3 is contained in the set described by 1. It will
be sufficient to consider the case

(a k+ab>
o =
@ 1 b Y

For, suppose it were instead of the form

z SZ
AL
zt —szt

Then we could choose z’ to be any isotropic vector not orthogonal to z and

set
z+7 1
B= < 0 —(z+Z'))

making 8 an invertible vector in W. Then the upper left entry of Bg’ would
be z'z+zt, which would be in M by the corollary to Lemma 0, and this
would also be in I since

(z'z+zt) *(z'z+2t) = (22'-2)(2t-2) # 0
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Since §Ba’ would have its lower left entry invertible, it would be of the
desired form. Now it is easy to show

(a k+ab)l_,:<a+b1 —a-a+ml)l( b m)(a L)
1 b 1-1 —(a+bl) -1 -b/\1 -a
where [ is a nonzero scalar chosen so that (a+b)>+k(I—1)/1 is not zero,
and the remaining scalars are defined by m = —k/I+b-b and
L=2a-b+b-b+k(I-1)/1
Then a-a+ L# 0. The matrix
a+bl —aatml
( 1-1 —(a+bl) )

is invertible, since its square is (5 J)(a-a+ L)L We see that

a k+ab 1 0
= ]!
¢ (1 b ) (0 1)’7

is in I’ by observing that for all y in I', y=x,,...,X,, where the x; are
invertible vectors of X,

(o )= )0 )G )5 2 G )G 3))
o 177"\ o/\1 o/\o —x/) \o —x/\\1 o/\1 o
showing that ¢ is alsoin . W

3. APPLICATIONS

3.1. Lie Geometry
Let

0
w o —w

W=

“ (W" -w )
be in W, so that the associated equation of a “sphere” is

wox-x —2wx+ w® =0

If w’#0 and w-w=—-w'w*+w-ws0, the sphere is a proper sphere and
one calls w- w/(w"? the square of its “radius.”

If K were an ordered field in which positive elements had square roots,
we would be able to write w-w = —w’w*+w-w as

0=—w'w®—(w)’+ww
where w-w is the square (w")> This motivates the following, where we make

no special assumptions concerning square roots in K, but where we do
require that K be an ordered field.
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Let Y be an n-dimensional vector space equipped with the quadratic
form y ~» y-y. Let X be the orthogonal sum of the two spaces ¢,K and Y,
where e,-e, = —1. In this case, x =e,y" +y can be interpreted as representing
an oriented sphere with center y and radius |y”|. The sign of y" determines
the orientation.

To stress this new structure on X, we write a general element of W as

B (e,w’ +w -w )

YEL we —(e,w" +w)
Then, when w-w=—w’w®—(w")*+w-w is zero, w is associated with the
equation w'y-y—2w-y+w =0 of a “sphere.” Now the Mdbius group G
can be interpreted as the group of the Lie geometry of Y. The transformations
represented by G do not act on the points of Y, but only act on the “spheres”
of Y. Orthogonal “spheres” are not in general sent to orthogonal “spheres,”
but instead tangent oriented “spheres” are sent to tangent oriented
“spheres.” Thus, G is the spherical version of a Lie contact transformation.
For more about Lie geometry over the reals see Yaglom (1981) and Rigby
(1981).

3.2. Extended Action of Mobius Groups

Let us find the image of a “sphere” w of X under inversion in a proper
“sphere” g of X. Let w in W represent w and let the invertible matrix y
in W represent g. Then the image is given by

Here I and * are the involution and anti-involution on A that extend
negation on W, respectively. Dividing by ¥ *y was not necessary to obtain
the equation of the image ‘sphere,” ‘but makes the transformation
orthogonal and more easily recognized simply as a “reflection.”
Introduce a new linear space W which is isometric to the space W and

represents equations of “‘spheres” of X. The isometry is given by
_ © w —w”
w=lwo g w=1 o,
W —w
w

when W is equipped with the quadratic form W ~ W - w = —w’w +w-w. So
w and w both represent the equation w'x-x—2w-x+ w®. Transporting the
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transformation from W to W, we obtain w'=w—2%(3Ww/%¥). Now w
represents the equation of the image “sphere.”

This interpretation is by far the simplest way to calculate the equation
of the image of a “‘sphere” represented by w with respect to inversion in
the proper “‘sphere” represented by y. Compare this with Yaglom (1981),
p. 352. .

Finally, since the transformations w'=w —2%(¥-w/ ¥ ¥), for all invert-
ible y in W, generate the orthogonal group O(W), the methods of this
paper yield in a unified way (1) the Mdébius group of X, (2) the group of
the Lie geometry of Y; and (3) the orthogonal group of W, as well as the
natural extensions that act on (1) the “spheres” of X and (2) what is
classically known as bundles of “spheres’ that touch a given “‘sphere.”
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